
Correlazione e regressione

Il termine **associazione** è largamente usato nella letteratura scientifica ed esprime la relazione che esiste tra due variabili

Per studiare l'associazione tra due variabili bisogna pensare almeno a due livelli di analisi:

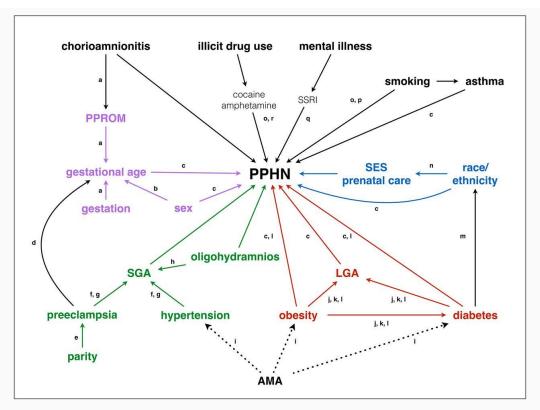
- La relazione tra le due variabili in studio può essere spiegata da una terza variabile (la terza variabile deve essere inclusa nello studio!!!)
- 2. Utilizzare i metodi statistici appropriati per studiare la relazione

La relazione tra le due variabili in studio può essere spiegata da una terza variabile (la terza variabile deve essere inclusa nello studio!!!)

630 THE NEW ENGLAND JOURNAL OF MEDICINE

March 12, 1981

COFFEE AND CANCER OF THE PANCREAS


BRIAN MACMAHON, M.D., STELLA YEN, M.D., DIMITRIOS TRICHOPOULOS, M.D., KENNETH WARREN, M.D., AND GEORGE NARDI, M.D.

La relazione tra le due variabili in studio può essere spiegata da una terza variabile (la terza variabile deve essere inclusa nello studio!!!)

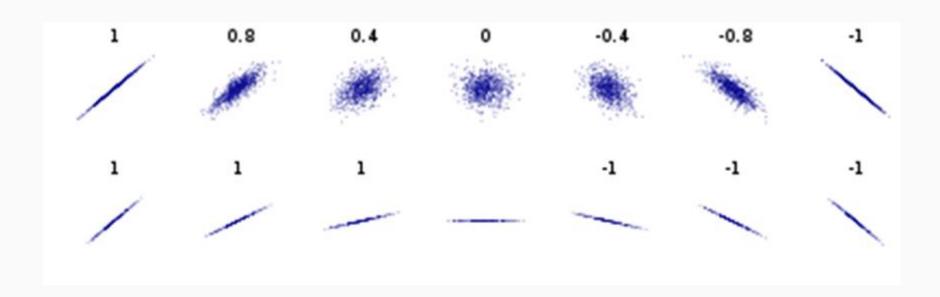
Pediatrics January 2017, VOLUME 139 / ISSUE 1 From the American Academy of Pediatrics Article

Persistent Pulmonary Hypertension of the Newborn in Late Preterm and Term Infants in California

Martina A. Steurer, Laura L. Jelliffe-Pawlowski, Rebecca J. Baer, J. Colin Partridge, Elizabeth E. Rogers, Roberta L. Keller

2. Utilizzare i metodi statistici appropriati per studiare la relazione

Response variable


	Categorical	Quantitative	
Categorical Explanatory variable	C-C	C-Q Q- Log	→C gistic Regression
Quantitative	Q-C	Q-Q	
			,

Correlazione

Il coefficiente di correlazione descrive quanto due variabili sono associate. In altre parole la quantità di variabilità in una misura che è spiegata da un'altra misura.

Il range del coefficiente di correlazione va da -1 a +1 I valori estremi indicano una perfetta associazione lineare

Un coefficiente di correlazione positivo indica che le variabili crescono di valore insieme; negativo quando una variabile cresce l'altra decresce. È paria a 0 quando non c'è un'associazione lineare tra due variabili

Correlazione vs regressione

La correlazione non discrimina tra tipi di variabili (y variabile dipendente, x variabile indipendente), ma misura l'associazione lineare tra le due variabili e misura quanto variano insieme x e y

La regressione lineare discrimina tra x e y e calcola la migliore retta che predice i valori di y per dati valori osservati di x

In molte analisi che indagano la relazione tra variabili continue calcoliamo entrambe le statistiche

Tipi di correlazione

Coefficiente di correlazione di Pearson

Utilizzato per misurare la relazione lineare tra due variabili continue entrambe normalmente distribuite

Se non assumiamo la normalità della distribuzione delle variabili, possiamo scegliere un coefficiente di correlazione non paramentrico

Coefficiente di correlazione di Spearman

È utilizzato quando una variabile ha una distribuzione normale e l'altra è categorica o non normalmente distribuita

La variabile categorica o non normalmente distribuita è classificata in ranghi che vengono ordinati e correlati alla variabile continua

Tipi di correlazione

Il coefficiente di correlazione di popolazione ρ (rho) misura la forza dell'associazione tra variabili

Il coefficiente di correlazione campionario r è una stima di p ed è calcolato per misurare la forza dell'associazione lineare tra le variabili nel campione in studio

Il coefficiente di correlazione campionario r tra due variabili è ottenuto dal rapporto tra la loro covarianza divisa per il prodotto delle deviazioni standard

$$r = r_{xy} = \frac{\text{Cov}(x,y)}{S_{x} \times S_{y}} \qquad r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^{2} \sum (y - \overline{y})^{2}}}$$

Suggerimenti per le analisi

1. Esplora le variabili

analisi descrittiva: scatter plot le variabili hanno una distribuzione normale?

2. Calcola l'appropriato coefficiente di correlazione

la correlazione è usata per misurare la forza dell'associazione lineare tra due variabili

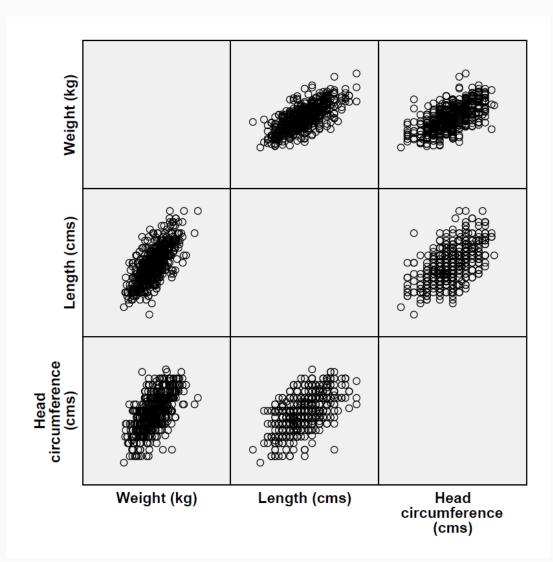
3. Guarda l'intervallo di confidenza

4. Guarda il pvalue

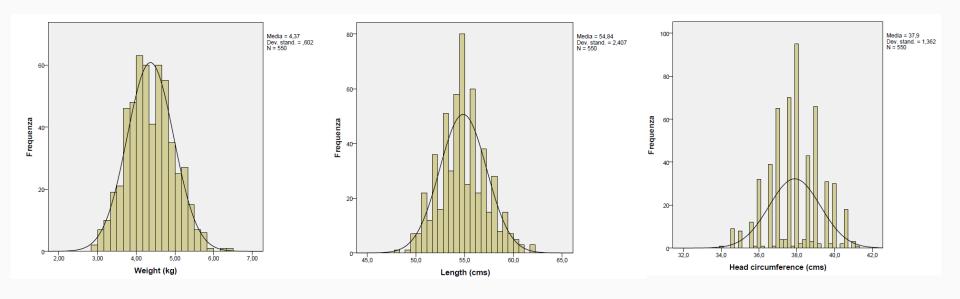
NB

La relazione lineare tra due variabili non implica una relazione causale tra due variabili

Se il pvalue è maggiore del livello di significatività scelto come soglia i dati non sono consistenti per concludere che vi sia una correlazione reale. Ciò non significa che non ci sia una correlazione tout court!


Database weights.sav contiene i dati di un campione di 550 bambini a cui è stato registrato il peso a un mese di vita

Vogliamo rispondere alla domanda C'è un'associazione lineare tra peso, lunghezza e circonferenza cranica nei bambini di un mese?


ta *weig	hts.sav [Insiem	neDati1] - IBM SI	PSS Statistics Da	ta Editor			
<u>F</u> ile <u>M</u> o	difica <u>V</u> isua	alizza <u>D</u> ati	T <u>r</u> asforma Ar	nal <u>i</u> zza Direct	<u>m</u> arketing	<u>G</u> rafici	<u>U</u> tilità Fi <u>n</u> es
			· 👊 📱		44	*5	
9 : ZPR_1		1,783970096	18593				
	id	weight	length	headc	gender	educatio	parity
1	L001	3,95	55,5	37,5	2	4	3
2	L003	4,63	57,0	38,5	2	4	0
3	L004	4,75	56,0	38,5	1	3	2
4	L005	3,92	56,0	39,0	1	4	1
5	L006	4,56	55,0	39,5	1	2	
6	L007	3,64	51,5	34,5	2	4	0
7	L008	3,55	56,0	38,0	2	2	3
8	L009	4,53	57,0	39,7	1	2	
9	L010	4,97	58,5	39,0	1	4	2
10	L011	3,74	52,0	38,0	1	2	
11	L013	4,19	54,0	37,5	2	2	
12	L014	4,35	59,0	39,5	2	2	2
13	L016	4,62	56,0	38,5	2	2	0
14	L018	4,09	53,0	38,0	2	3	0
15	L019	4,42	57,0	38,0	2	2	1
16	L020	5,62	58,0	40,0	1	4	0
17	L021	5,25	58,0	38,5	1	3	3
18	L022	4,32	54,5	38,5	1	2	1

Analisi descrittiva: scatter plot

Tutti i grafici mostrano un'associazione lineare positiva per ogni combinazione bivariata

Verifica della distribuzione normale delle variabili

	Asimr	metria	Cur	tosi
	Statistica	Errore std	Statistica	Errore std
Weight (kg)	,201	,104	-,146	,208
Length (cms)	,223	,104	-,141	,208
Head circumference (cms)	-,121	,104	-,206	,208
Validi (listwise)				

Le tre variabili hanno una distribuzione approssimabile a una normale

Calcola l'appropriato coefficiente di correlazione

Correlazioni

		Weight (kg)	Length (cms)	Head circumference (cms)
Weight (kg)	Correlazione di Pearson	1	,713	,622
	Sig. (2-code)		,000	,000
	N	550	550	550
Length (cms)	Correlazione di Pearson	,713**	1	,598
	Sig. (2-code)	,000		,000
	N	550	550	550
Head circumference (cms)	Correlazione di Pearson	,622**	,598**	1
	Sig. (2-code)	,000	,000	
	N	550	550	550

^{**.} La correlazione è significativa al livello 0,01 (2-code).

Guarda il pvalue

Guarda l'intervallo di confidenza

		Coef	ficienti ^a				
	Coefficienti noi	n standardizzati	Coefficienti standardizzati			Intervallo di cor pe	
Modello	В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore
1 (Costante)	-2,383E-015	,030		,000	1,000	- 050	050
Punteggio Z: Length (cms)	,713	,030	,713	23,813	,000	,654	,772

a. Variabile dipendente: Punteggio Z: Weight (kg)

			Coef	fficienti ^a				
		Coefficienti noi	n standardizzati	Coefficienti standardizzati			Intervallo di con per	
Model	lo	В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore
1	(Costante)	-1,486E-014	,033		,000	1,000	-,066	,000
	Punteggio Z: Head circumference (cms)	,622	,033	,622	18,618	,000	,557	,688

a. Variabile dipendente: Punteggio Z: Weight (kg)

		Coef	ficienti ^a				
	Coefficienti no	n standardizzati	Coefficienti standardizzati			Intervallo di con per	
Modello	В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore
1 (Costante)	-8,620E-015	,034		,000	1,000	1001	,007
Punteggio Z: Head circumference (cms)	,598	,034	,598	17,478	,000	,531	,666

Test di ipotesi per la correlazione

 H_0 : $\rho = 0$ (non c'è correlazione)

 H_1 : $\rho \neq 0$ (c'è correlazione)

Statistica test

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$
con n-2
gradi di
libertà
$$t = \frac{0.713}{\sqrt{\frac{1-(0.713)^2}{n-2}}}$$
= 23,8
$$\alpha = .05$$
d.f. = 550-2 = 548
$$\alpha/2 = .025$$

$$\alpha/2 = .025$$
Do not reject H₀

$$0$$

$$t_{\alpha/2}$$
Reject H₀

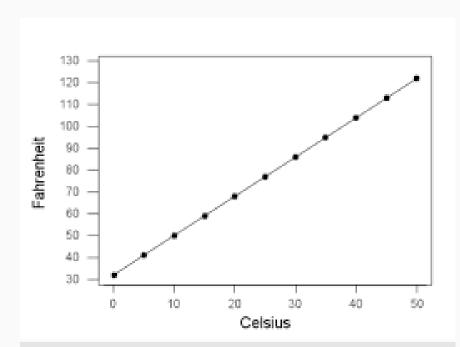
$$0$$
1,96

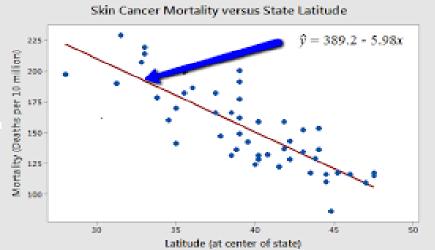
Test di ipotesi per la correlazione

Il coefficiente di correlazione lineare di Pearson mostra che la maggiore associazione lineare è tra peso e lunghezza con un valore di r pari a 0,713 e una modesta associazione tra peso e circonferenza cranica (0,622).

Malgrado la differenza nella forza di associazione i coefficienti di correlazione sono tutti significativi pvalue<0.0001; a sostegno di quanto il pvalue sia poco sensibile nella selezione dei predittori di un dato outcome.

Regressione lineare

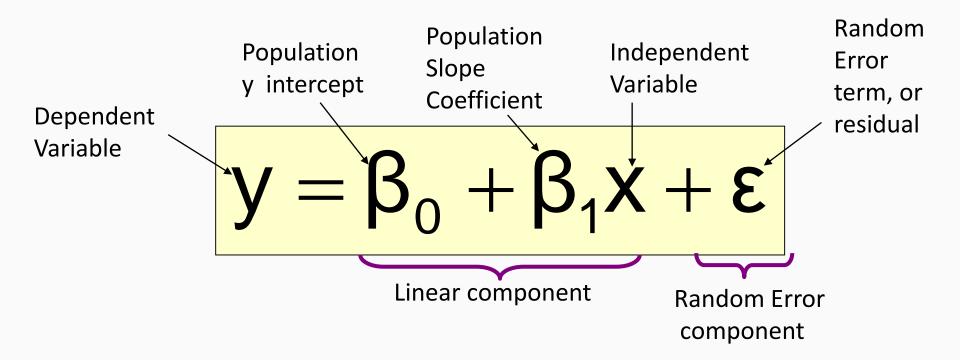

È un metodo statistico che permette di studiare e sintetizzare la relazione tra due variabili quantitative


- una o più variabili sono chiamate predittori o variabili indipendenti o variabili esplicatorie
- Una variabile di riposta o outcome o variabile dipendente

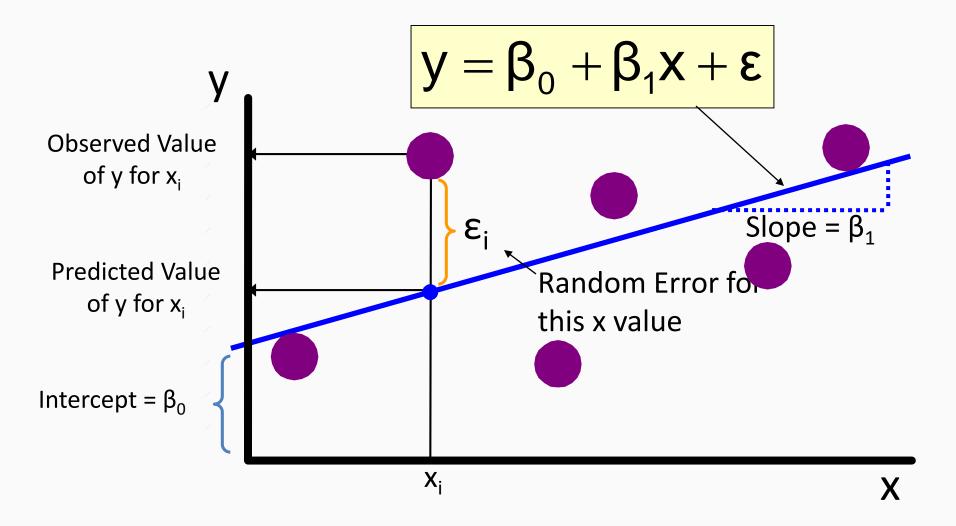
Relazione deterministica vs relazione probabilistica

Relazione deterministica L'equazione della retta di regressione descrive esattamente la relazione tra due variabili

Relazione probabilistica L'associazione non è perfetta, siamo interessati a calcolare una statistica sui parametri della retta di regressione

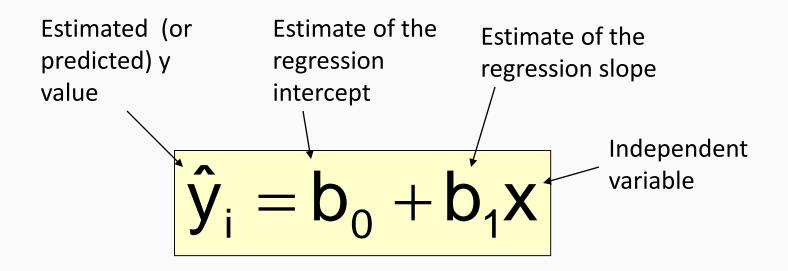

Obiettivi della regressione lineare

1. Costruire un modello di predizione, in grado di prevedere l'outcome di interesse conoscendo altre informazioni dei soggetti inclusi nel campione (variabili esplicatorie)


2. Valutare l'effetto di una variabile esplicatoria (es. un fattore di rischio) su u outcome di interesse

Equazione della retta di regressione

The population regression model:



Population Linear Regression

Equazione della retta di regressione

La retta di regression campionaria fornisce una stima della retta di regressione di popolazione

The individual random error terms e_i have a mean of zero

Equazione della retta di regressione

In generale quando calcoliamo la retta di regressione

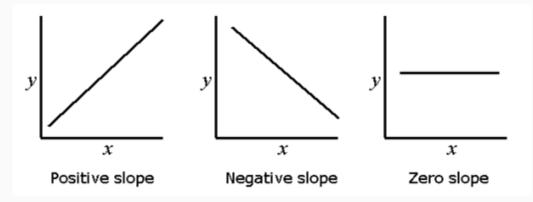
$$\mathbf{\hat{y}}_i = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$$

Commettiamo un errore (residui) di grandezza pari a $e_i = y_i - \hat{y}_i$

Criterio dei minimi quadrati

 b₀ e b₁ sono ottenuti calcolando I valori di b₀ e b₁ che minimizzano la somma residui quadrati

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$


$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

Coefficienti della retta

Pendenza

$$b_{1} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^{2}}$$

Denominatore sempre positivo. Il segno della pendenza è determinato dal numeratore. B1>0 quando x aumenta y tende ad aumentare B1<0 quando x aumenta y tende a diminuire

Intercetta

$$b_0 = \overline{y} - b_1 \overline{x}$$

Interpretazione della pendenza e dell'intercetta

- b₀ rappresenta l'intercetta della retta di regressione ed indica il valore della variabile di risposta Y quando il predittore x assume valore 0.
- b₁ rappresenta l'inclinazione della retta di regressione, ovvero la variazione della variabile di risposta Y in conseguenza di un aumento unitario del predittore x.

Assunzioni nella regressione lineare

Disegno dello studio

- Il campione deve essere rappresentativo della popolazione su cui viene fatta inferenza
- I dati devono essere raccolti in un periodo nel quale la relazone tra outcome e variabili esplicatorie rimane costante

Modello

- La relazione tra variabili esplicatorie e outcome è approssimabile ad una retta
- I residui sono distribuiti in modo normale
- Omoscedasticità: varianza costante su tutto il modello

Indipendenza

- Tutte le osservazioni sono indipendenti le une dalle altre
- La collinearità tra le variabili esplicatorie è bassa

Utilizzando lo stesso studio (dataset weights.sav)

Domanda: La lunghezza del corpo può essere utilizzata per predire il peso a un mese di vita?

H0: Non c'è relazione tra lunghezza del corpo e pesoa un mese

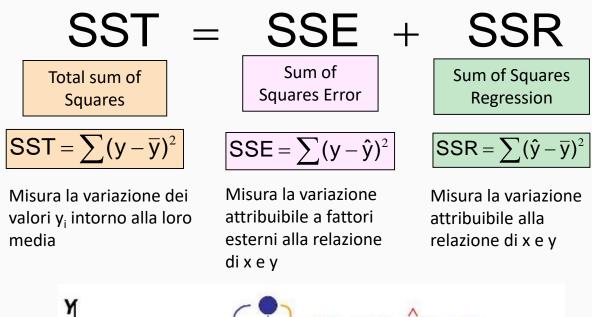
Variabili:

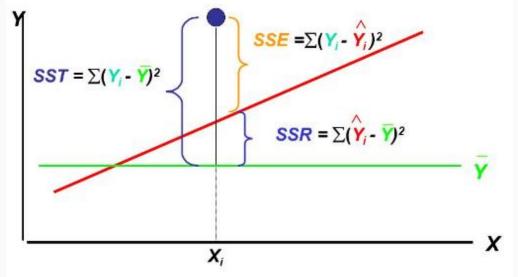
Variabile di outcome: peso corporeo (Kg)

Variabile esplicatoria= lunghezza del corpo (cm)

Output del modello di regressione lineare in SPSS: riepilogo del modello

Riepilogo del modello


				Deviazione
				standard
			R-quadrato	Errore della
Modello	R	R-quadrato	corretto	stima
1	,713ª	,509	,508	,42229


a. Predittori: (Costante), Length (cms)

Il valore di r² (**coefficiente di determinazione**) di 0,509 indica che il 50,9% della variazione nel peso è spiegata dalla lunghezza

Output del modello di regressione lineare in SPSS: tabella ANOVA

La varianza del modello può essere divisa in due parti

Output del modello di regressione lineare in SPSS: tabella ANOVA

			Anova ^a			
M	odello	Somma dei quadrati	df	Media dei quadrati	F	Sig.
1	Regressione	101,119	1	101,119	567,043	,000 ^b
	Residuo	97,723	548	,178		
	Totale	198,842	549			

- a. Variabile dipendente: Weight (kg)
- b. Predittori: (Costante), Length (cms)

La statistica F, che si ottiene dividendo la varianza spiegata dalla regressione per la varianza non spiegata dalla relazione x/y, è largamente significativa p<.0001.

C'è una significativa relazione lineare tra lunghezza e peso. Questa statistica indica anche che il modello di regressione lineare complessivamente predice l'outcome

Output del modello di regressione lineare in SPSS: i coefficienti

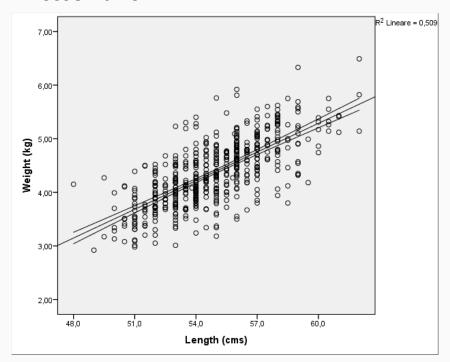
					Coefficienti ^a					
			Coefficienti nor	n standardizzati	Coefficienti standardizzati			lr	ntervallo di con per	ifidenza 95,0% r B
	Modello		В	Deviazione standard Errore	Beta	t	Sig.		Limite inferiore	Limite superiore
	1	(Costante)	-5,412	,411	(-13,167	,000		-6,220	-4,605
		Length (cms)	,178	,007	,713	23,813	,000		,164	,193
ľ	a. Var	iabile dipenden	te: Weight (kg)							

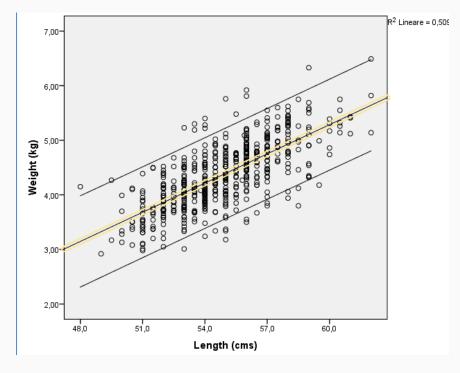
$$y = b_0 + b_1 x$$

Peso= -5.412 + (0,178 x lunghezza)

 b_0 = serve solo per calcolare i valori sulla retta di regressione; ha uno scopo strumentale e nessun significato biologico

 b_1 = coefficiente di regressione indica che per un incremento unitario della lunghezza il peso aumenta di 0,178 Kg


Test di ipotesi sui coefficienti della retta $(H_0:b_0 \in b_1=0)$: i valori di t sono calcolati dividendo i valori dei b per i loro errori standard


Indicano il contributo relativo di ciascuna variabile esplicatoria al modello (in questo caso è uguale a r perché c'è una sola variabile indipendente)

Output del modello di regressione lineare in SPSS: grafico della retta di regressione

Possiamo disegnare la retta di regressione con gli intervalli di confidenza intorno al valore predetto che rappresenta l'area nella quale c'è il 95% della «vera» retta di regressione

NB da non confondere con l'intervallo di confidenza in cui si trovano il 95% delle osservazioni

Regressione multipla

Un modello lineare nel quale sono presenti due o più variabili esplicative è chiamato regressione lineare multipla

Le variabili esplicatorie possono essere continue o categoriche

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 \dots$$

b₀ è l'intercetta

b_i sono i coefficienti di regressione di ciascuna variabile esplicatoria, o, in altre parole, i pesi che assegniamo a ciascuna variabile esplicatoria inclusa nel modello

Tre metodi per costruire il modello

- Standard: tutte le variabili entrano insieme nel modello
- Stepwise: l'ordine di ingresso delle variabili nel modello è
 determinato dalla forza della loro correlazione
 Forward: le variabili sono aggiunte una alla volta fino a che
 l'ingresso di una variabile spiega solo una quantità di
 varianza nel modello non significativa
 Backward: tutte le variabili entrano insieme nel modello e
 viene tolta una variabile per volta se non contribuisce
 significativamente alla predizione dell'outcome
- **Sequential**: l'ordine di ingresso delle variabili è determinato dal ricercatore secondo criteri teorici o statistici

Un esempio di modello di regressione multipla

Utilizzando lo stesso studio (dataset weights.sav)

Domanda: La lunghezza del corpo e il genere possono essere utilizzate per predire il peso a un mese di vita?

H0: Non c'è relazione tra lunghezza del corpo, genere e peso a un mese

Variabili:

Variabile di outcome: peso corporeo (Kg)

Variabile esplicatoria: lunghezza del corpo (cm)

Variabile esplicatoria: genere

				Riepilogo	del modello				
				Deviazione		Variazione	dell'adattam	nento	
			R-quadrato	standard Errore della	Variazione di	Variazione di			Sig. Variazione di
Modello	R	R-quadrato	corretto	stima	R-quadrato	F	df1	df2	F
1	,713ª	,509	,508	,42229	,509	567,043	1	548	,000
2	,741 ^b	,549	.548	,40474	.041	49,543	1	547	.000

a. Predittori: (Costante), Length (cms)

Poiché ci sono due variabili è appropriato valutare il coefficiente di determinazione r2 aggiustato

Nel secondo modello r2 aumenta di 0,041

L'aumento è significativo e il modello è migliore nella predizione dell'outcome

Anova [*]

N	lodello	Somma dei quadrati	df	Media dei quadrati	F	Sig.
1	Regressione	101,119	1	101,119	567,043	,000b
ı	Residuo	97,723	548	,178		
ı	Totale	198,842	549			
2	Regressione	109,235	2	54,61	333,407	,000°
	Residuo	89,607	547	,164		
	Totale	198,842	549			

a. Variabile dipendente: Weight (kg)

La statistica F mostra una significativa relazione lineare tra lunghezza e peso e tra lunghezza, genere e peso. Questa statistica indica che i modelli di regressione lineare complessivamente predicono l'outcome

b. Predittori: (Costante), Length (cms), Gender

				Coefficienti ^a				
	Coefficienti non standardizzati		Coefficienti standardizzati			Intervallo di con per	·	
Mod	ello	В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore
1	(Costante)	-5,412	,411		-13,167	,000	-6,220	-4,605
	Length (cms)	,178	,007	,713	23,813	,000	,164	,193
2	(Costante)	-4,312	,424		-10,173	,000	-5,144	-3,479
	Length (cms)	,165	,007	,660	22,259	,000	,151	,180
	Gender	-,251	,036	-,209	-7,039	,000	-,321	-,181

a. Variabile dipendente: Weight (kg)

L'errore standard della lunghezza resta costante anche aggiungendo al modello la variabile genere, ciò depone per una buona stabilità del modello

Possiamo riscrivere l'equazione della retta y= -4,56 + 0,165 x lunghezza – (0,251 x genere)

Poiché nel db i maschi sono codificati con zero, l'ultimo termine può essere rimosso per i maschi. Una femmina in media, dopo aggiustamento per la lunghezza, ha un peso più basso di 0,251 Kg rispetto ad un maschio.

I coefficienti standardizzati ci dicono che la lunghezza è il maggiore predittore del peso (0,660 lunghezza, 0,209 genere)

	Variabili escluse ^a									
					Correlazioni	Statistiche di collinearità				
ı	Modello	Beta In	t	Sig.	parziali	Tolleranza				
	1 Gender	-,209 ^b	-7,039	,000	-,288	,936				

a. Variabile dipendente: Weight (kg)

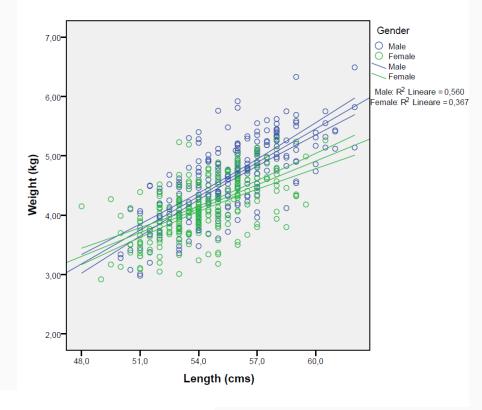
b. Predittori nel modello : (Costante), Length (cms)

Statistiche di collinearità Una tolleranza vicino 1 indica assenza di multicollinearità tra le variabili

NB

Tolleranza <0,2 multicollinearità

Interazione


Una interazione si verifica quando c'è una relazione moltiplicativa piuttosto che additiva tra le variabili esplicatorie

Rapportandoci al nostro esempio se non ci fosse interazione tra le variabili, il coefficiente di regressione delle rette nei gruppo dei maschi e delle femmine dovrebbe essere uguale.

A livello grafico, quindi, nel caso di assenza di interazione tra le variabili lunghezza e genere, le rette dei maschi e delle femmine dovrebbero essere approssimativamente parallele.

Se ci fosse interazione ci aspettiamo due rette con diversa pendenza e che, quindi, si intersecano

Interazione

Coefficienti^{a,b}

		Coefficienti noi	n standardizzati	Coefficienti standardizzati			Intervallo di cor pe	'
Mod	dello	В	Deviazione standard Errore	Beta	t			Limite superiore
1	(Costante)	-5 913	,564		-10,491	,000	-7,022	-4,803
	Length (cms)	,189	,010	,749	18,657	,000	,169	,209

- a. Variabile dipendente: Weight (kg)
- b. Selezione in corso solo dei casi per cui Gender = Male

Coefficienti^{a,b}

		Coefficienti no	n standardizzati	Coefficienti standardizzati			Intervallo di con per	
Mode	ello	В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore
1	(Costante)	-3,113	,577		-5,394	,000	-4 249	-1 977
	Length (cms)	,134	,011	,606	12,580	,000	,113	,155

- a. Variabile dipendente: Weight (kg)
- b. Selezione in corso solo dei casi per cui Gender = Female

Interazione

Per testare la presenza di interazione, le due variabili si moltiplicano calcolando una terza variabile di interazione. Includiamo la nuova variabile nel modello

Riepilogo del modello^c

				Deviazione Variazione dell'adattamento						
Modello	R	R-quadrato	R-quadrato corretto	standard Errore della stima	Variazione di R-quaurato	Variazione di F	df1	df2	Si Variazi F	- 1
1	,741ª	,549	,548	,40474	,549	333,407	2	547		,000
2	,749 ^b	,561	,558	,39994	,011	14,215	1	546		,000

a. Predittori: (Costante), Gender, Length (cms)

Coefficientia

		Coefficienti noi	n standardizzati	Coefficienti standardizzati			Intervallo di confidenza 95,0% per B		
Modello		В	Deviazione standard Errore	Beta	t	Sig.	Limite inferiore	Limite superiore	
1	(Costante)	-4,312	,124		-10,173	,000	-5,144	-3,479	
	Length (cms)	,165	,007	,660	22,259	,000	,151	,180	
	Gender	-,251	,036	-,209	-7,039	,000	-,321	-,181	
2	(Costante)	-8,713	1,240		-7,026	,000	-11,149	-6,277	
	Length (cms)	,245	,022	,981	10,914	,000	,201	,289	
	Gender	2,800	810	2,328	3,457	,001	1,209	4,391	
	lenghtxgender	-,056	,015	-2,478	-3,770	,000	-,085	-,027	

a. Variabile dipendente: Weight (kg)

	Variabili escluse ^a								
					Correlazioni	Statistiche di collinearità			
Modello	0	Beta In	t	Sig.	parziali	Tolleranza			
1	lenghtxgender	-2,478 ^b	-3,770	,000	-,159	,002			

a. Variabile dipendente: Weight (kg)

b. Predittori: (Costante), Gender, Length (cms), lenghtxgender

c. Variabile dipendente: Weight (kg)

b. Predittori nel modello : (Costante), Gender, Length (cms)

Residui

I residui rappresentano le distanze tra ciascun valore osservato e valore predetto dal modello di regressione

Tra le assunzioni che avevamo enunciato per il modello di regressione lineare:

- I residui sono distribuiti in modo normale
- Omoscedasticità: varianza costante su tutto il modello

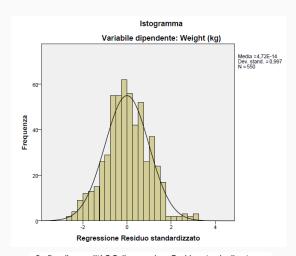
Analisi dei residui sono importanti per valutare se le assunzioni sono violate

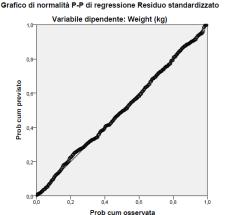
E' utile convertire i residui in residui standardizzati: distanze espresse in unità di deviazione standard

Residui

I residui sono distribuiti in modo normale?

Calcolare e salvare i residui standardizzati del modello di regressione

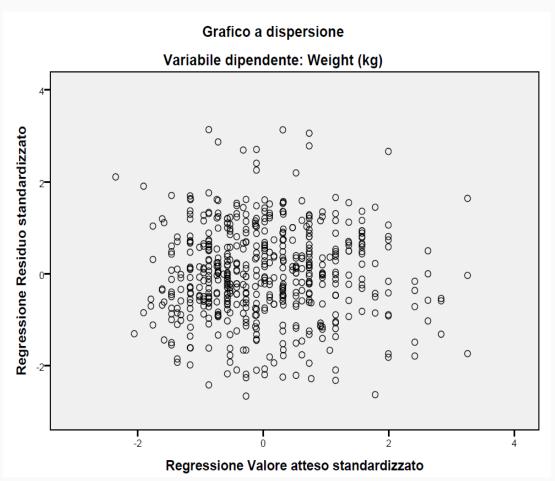

Statistiche descrittive > esplora


	Descrit	tive		
			Statistica	Errore std.
Standardized Residual	Media	0E-7	,04252348	
	Intervallo di confidenza	Limite inferiore	-,0835286	
	per la media al 95%	Limite superiore	,0835286	
	Media 5% trim	-,0010561		
	Mediana	-,0194572		
	Varianza	,995		
	Deviazione std.	,99726402		
	Minimo		-2,65810	
	Massimo		3,13650	
	Intervallo		5,79460	
	Distanza interquartilica	1,28216		
	Asimmetria		,084	,104
	Curtosi		,223	,208

Test di normalità

	Kolm	ogorov-Smi	rnov ^a	Shapiro-Wilk			
	Statistica	df	Sig.	Statistica	df	Sig.	
Standardized Residual	,030	550	,200	,994	550	,033	

Limite inferiore della significatività effettiva.



Residui

Omoscedasticità: varianza costante su tutto il modello

Possiamo visualizzare lo spread della varianza nel modello attreverso uno scatter plot dei residui sui valori attesi

La varianza è approssimativamente costante, il modello è omoscedastico

